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A large number of papers on the flutter of plates in supersonic flows has now been pub- 
lished (see, for example, [1-3]). The instability of elastic vibrations of a plate in a 
boundary layer of a substantially subsonic flow have been analyzed for disturbances in the 
form of harmonic traveling waves [4, 5]. The instability of periodic deflection of an in- 
finite chain of plates in a turbulent boundary layer of an incompressible flow was studied 
i n  [ 6 ] .  

In the present paper we study the instability of flexural vibrations of bounded thin 
plates (panels) located beneath a turbulent boundary layer at the same level as a rigid 
flat surface. The Mach number of the flow is assumed to be small. Single-mode vibrations 
of a single rectangular plate and pairs of adjacent small plates hinged at the edges are 
studied. 

The problem of the instability of flexural vibrations of plates in boundary layers is 
of interest, in particular, in connection with the problem of suppressing panel flutter. 
The appearance of instability - spontaneous growth of flexural vibrations due to energy pro- 
vided by the flow - can result in more intense vibrations of the surface than would occur 
when the surface is excited passively by turbulent pulsations of the pressure [2, 7, 8]. 
The study of instability "in the small" makes it possible to proceed to the study of steady 
vibrations. Analysis of the interaction of adjacent small plates can serve as a foundation 
for the description of vibrations in long chains of plates, modeling a large panel surface. 

i. Response of Flow to Single-Mbde Harmonic Vibrations of a Small Rectangular Plate. 
We shall study the vibrations of a small plate, located at the same level as a flat rigid 
surface y = 0, and a plane-parallel flow of liquid with density p in the half-space y > 0. 
The density of the medium in the region y < 0 is assumed to be negligibly low. The flow- 

velocity profile u(y) is identical to the profile of the longitudinal velocity of the average 

flow in the turbulent layer and reaches a constant level u = u~ for y > 6 (6 is the thickness 
of the boundary layer). The dimensions of the small plate along and across the flow (along 
the x and z axes) are, respectively, L I and L 2. It is assumed that there is no transverse 
(with respect to the flow) flexural of the plate and the edges oriented along the flow are 
free. 

The equation for the deflection of the surface of the plate y = w(x, t) can be written 
in the form (see [9], p. 94) 
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where y, h, and D are the surface mass density, the thickness, and the flexural rigidity of 
the plate; N is the external contraction; and p(x, z, t) is the pressure disturbance on the 
surface in the flow. We supplement Eq. (i.i) with hinged boundary conditions at the edges: 
w = 0 and 82w/3x 2 = 0 at x = 0, L I. 

Following [i0, ii], we represent the solution of the boundary-value problem for w in 
the form of a Bubnov-Galerkin series in the system of functions sin(mk0x), where m = i, 
2, ..., k 0 = ~/L I is the wave number of the first mode. For not too high flow velocities, 
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we consider only the first mode: 

w = A(t)  sin (kox) (0 < x < L~). (1 .2)  

Substituting Eq. (1.2) into Eq. (i.i) we arrive at the equation describing the excitation 
for this mode: 

Dropping in Eq. 
Fw)exp(-iwt), we obtain from Eq. (1.3) the equation 

( - -  W 2 --  2ir~ + Dk~ - -  Nk~) A~ = F~. 

In order to calculate F w we switch to the space-time spectrum of the pressure: 

3 0  ko'A~ = F (t), d~A + 2r ~ + ( Dko' -- ~Vko ~) ,4 + 7 
"~ dt 2 
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(1.3) for small vibrations the term ~A 3 and setting (A, p, F) = (A~, p~, 

(1.3) 

(1.4) 
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For a linear medium p can be represented as 

p(o.  kx, kz)=  Y(~, kx, kz)W(~, kx, kz), (1 .6)  

where ~ is the frequency-wave spectrum of the displacement of the surface, defined similarly 
to Eq. (1.5); Y is the complex compressibility of the flow. 

We seek Y in the approximation of an incompressible medium. This quantity was found in 
[6] for two-dimensional deflections of the surface (k z = 0). In the case of three-dimen- 
sional deflections an explicit expression for Y = Y0 can be obtained for a uniform flow 
(~ = 0 ) :  

Yo(o), kx, k=)= -- ~ ( - ~ 7 ~ ' "  (1 .7)  

In the limit k x ~ 0 the compressibility of the uniform flow, with respect to two-dimensional 
deflections, has the asymptotic form Y0(w, k x, 0) + -p~2/Ikx[. The response F can be repre- 
sented [after inverting the Fourier transform (1.5)] as an integral over k x with a nonin- 
tegrable singularity ~-wf/ikx[, which gives an infinite apparent mass per unit area of the 
surface of the plate. It can be shown that this divergence of the apparent mass arises for 

(i " w ( x , t ) d x ~ O  . any monopolar form of the two-dimensional deflection Thus, excitation of 

only the first mode (1.2) is possible only for finite L 2. 

In the case of a boundary layer of finite thickness Y ~ Y0 as kx, k z ~ 0. This can be 
seen, in particular, from the expression given in [6] for Y(m, kx, 0) for kx6 << i. Separat- 
ing the singularity from Y and replacing the remaining smooth function for a small plate 
oriented across the flow (~ = Lf/L z >> i) by its value at the point k z = 0, we obtain 

~,~ Ikxl 
Y(o, kx, kz) _ (k~+ k2)1/2 Y(o, kx, 0). (1 .8)  

The formula (1.8) expresses the compressibility Y for three-dimensional deflections of the 
surface through the compressibility, found in [6], with respect to two-dimensional deflec- 
tions. 
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Substituting Eqs. (1.6) and (1.8) into Eq. (1.5) we arrive at the problem of calculat- 
ing an integral of the form 

i sin~• u _~ ( •  ' (k~L, + 4• -I/~ d• t 
- - 0 o  

which can be found approximately by approximating the spectral window f = sin 2 K/K 2 by the 

function f = i/r I~J < ~/r f = 0 for IKJ > ~/r As a result we obtain an expres- 
sion for the response of the flow to harmonic vibrations of the plate: 

o o  

F(g ) = - A~ ~ _  (k~ _- k~ ~), ~o~ ~ ~ r (~, k, O) dk. ( 1 . 9 )  

Here the zero in the superscript denotes the incompressible-fluid approximation; a($) = 

(I/2)$inI(l + ~ + i)/(i - /~2 + l)J. Since a ~ ~ in~ as $ + 0, the integral in Eq. (]..9) 

converges. It can be shown that F~ ~ A~ 2 inl as I + ~. As one can see from Eq. (1.4), 
this corresponds to weak divergence of the specific apparent mass for vibrations in the 
first mode. 

In order to employ the algorithm constructed in [6] for calculating the two-dimensional 
complex compressibility, we switch in Eq. (1.9) to "external" dimensionless variables of the 
theory of stability of shear flows k e = kd, k0 = k05, w e = w6/u~, Ye = Y6/P u~2, and we intro- 
duce the Reynolds number R = u=~/v, where v is the kinematic viscosity. Then we write Eq. 
(]..9) as 

F{O) pu~koG (0)~); ( 1.  lO ) 
o o  

4 ! k~ COS 2 {~ket(Y{ %ke ~ Y((oe, k~)dk~, (1.]l) 

where Y = Ye(~e, ke) + Ye*(-~e, ke) ; G is, essentially, the dimensionless apparent compres- 
sibility for harmonic vibrations of the plate in the first deflection mode. The relation 
(l.10) can be used to solve the problem of the stability of flexural vibrations in the case 
when the function G constructed with real values of w e is the analytic continuation of the 
function G(~e) calculated using the formula (1.11) on the contour Imw e = const ~ +~ in the 

complex plane ~e.~ It can be shown that for this the function Y should not have any singu- 
larities in the half-plane Imw e ~ 0 for real values of k e (only damped characteristic waves 
of the flow exist). The function Y(~e, ke) for a turbulent boundary layer for the low val- 
ues of k e considered here satisfies this requirement [6]. 

2. Mutual Apparent Compressibility. Matrix of Apparent Compressibilities for a Uni- 
form Flow. We now consider single-mode vibrations of a pair of identical plates arranged 
consecutively downstream: w = Azsin(]c0x) for 0 < x < Lz, w = A 2sin [k0(x - Lz)] for L I 
x < 2Lz, and w = 0 for x < 0 and x > 2L z. The procedure for calculating the response Fwi~ 
in this case is completely analogous to the procedure constructed in Sec. i. For this rea- 
son, we present without derivation the extension of the formula (i.i0) for two plates: 

F(O) ~ G 61 2A2 1(0)" 1,2 : - -  pu~ko( A1,2(o+ , , (2.1) 

Here Fj(~ is the right-hand side of Eq. (1.3), in which we made the substitution A + Aj(j = 

i, 2); Gz, 2 are calculated using the formula (i.ii) but with Y defined differently: 

Y--~ YI,~ = Ye (w-e, ke)e ~ia(~e~~ 2w Y* (--O)e, ke)e •176 (2.2) 

~This follows from the procedure employed for solving the problem of the response of the 
flow by the Laplace transform method. 

106 



- 8  
0 o,4 0,8 1,2 

-2  

- 5  

"\ 
o 0,4 0,8 1,z 5 

Fig. 1 

In accordance with Eq. (2.1) the quantities G and Gl, 2 are elements of the dimensionless ma- 
trix Gij of the apparent compressibilities for a pair of plates, and Gll = G22 = G, G12 = 

GI, G21 = G 2 . 

It is not difficult to find explicitly the matrix of apparent compressibilities in the 
case of a uniform potential flow over the plates. Using Eqs. (1.7) and (1.9) we obtain 

G(p) -- 
= --(a0c" § do), ( 2 . 3 )  

where c = we/k0; the coefficients a 0 and d o , determining the effects of the apparent mass 
and static elasticity, have the form 

a 0 ~ . N o d~r ~ a~• (t - • t o e  

d ~  ~ ' ( 1 - - •  c~ "-2- • a d• 

( 2 . 4 )  

and depend only on I. For I = 3 the calculations give a 0 = 1.8 and d o = 0.71. The off- 
diagonal elements of the matrix of apparent compressibilities are found similarly: 

G~P) (al~ 2 i b~  + dl). ( 2 . 5  ) 1 , 2  ~ - -  

T h e  e x p r e s s i o n s  f o r  a z ,  b 1, a n d  d 1 h a v e  a s t r u c t u r e  s i m i l a r  t o  t h e  e x p r e s s i o n s  ( 2 . 4 ) .  F o r  
= 3 ,  a 1 = 0 . 5 4 ,  b 1 = - - 0 . 4 5 ,  a n d  d z = - - 0 . 1 4 .  I n  w h a t  f o l l o w s ,  a l l  n u m e r i c a l  c a l c u l a t i o n s  a r e  

a l s o  p e r f o r m e d  f o r  t = 3 .  

3. Calculation of the Matrix of Apparent Compressibilities for the Average Flow in a 
Turbulent Boundary Layer. The calculations were performed using the formulas (i.i0), (I.ii), 
and (2.2). The one-dimensional complex compressibility was found by the method of [6]. The 
integral in Eq. (i. Ii) was calculated using 40 points and an upper limit of 3k0. 

Figures la and b display the imaginary and real parts of the function G = G r + iG i with 

R = 8-]_04 (the curves 1-3 correspond to k0 = i; 2; 3). It can be shown that for Gi > 0 the en- 
ergy flux is directed toward the surface (similarly to [6]). The calculations show that 
the quasipotential approximation is applicable for G to a high degree of accuracy: G = 

G(P) + small complex correction, and in the expression (2.3) for G(P) the coefficient d o de- 

pends on k0 and R (for a uniform flow k0 ~ 0). In particular, for R = 8"104 , do = 0.46; 

0.38; 0.34 for k0 = I; 2; 3, respectively. 

The degree to which G i depends on R with k0 = 1 is illustrated in Fig. 2 (the curves 
1-3 correspond to R = 4"104; 8"104; 1.5"10s). The coefficient d o does not change signifi- 
cantly in this range of values of R. 

The results of calculating Gi,ir and Gi,ii with k0 = i, R = 8"104 are presented in Fig. 

3a. The quasipotential approximation is also applicable to GI, 2 = GI,2(P) + small complex 
corrections, where in the expression for (2.4) for G1,2(P ) the coefficients b I and d I depend 

on k0 and R. In particular, for k0 = i, R = 8"104 b I = -0.43, d I = -0.i0, and b I and d I do 
not vary significantly in the indicated range of values of R. The energy flux to the sur- 
face, due to interaction of the plates, is determined by the nonzero off-diagonal elements 

107 



6 

0 

- -6 
0 

Fig. 2 

-O,2 

- 0 , 4  \ 

~~ 0,4 o,a 1,2 ~ '  

AG 

Fig. 3 

o o,6 .~,e ~,a 

of the anti-Hermitian part of the matrix Gij, i.e., the difference AG = GI* - G 2. The de- 

pendence of the real and imaginary parts of AG on c with k0 = i, R = 8"]_04 is shown in Fig. 
3b (&Gr, &G i - lines i, 2). 

We underscore the fact that the physically graphic quasipotential model for Gij is based 

on the results of numerical calculations and can be considered only as an approximation of 
Gij in a finite frequency band. 

4. Taking into Account Losses Due to Emission of Sound. In a medium with finite com- 
pressibility, energy losses associated with emission of sound appear. We confine our atten- 
tion to acoustically compact plates (mLi,2/c a << i, c a is the speed of sound), when for L 2 >> 
Ll the hydrodynamic disturbances in the boundary layer (whose thickness satisfies the con- 
dition ~/c a << i) are quasi-two-dimensional but the acoustic field is not. Regarding the 
medium as stationary and using a well-known expression from the theory of radiation for the 
pressure field from a radiator "in the screen" [12], it is possible to calculate the first 
correction in the expansion of the pressure with respect to the delay time of the sound 
within the plate. This component of the pressure determines the acoustical component of 

the response of the medium Fi,2(a) [see Eq. (1.4)]. For a surface consisting of two plates 
we obtain the expression 

F(a) __ 4PL1L 2 ( dZA1 I d3A2'l 
1,2 :X~ca ~ ~-E T dt 3 /" 

(4.1) 

The formula (4.1) can also be used in the case when a flow with low Mach number (M = u~/ 
c a << i) is present in the region y > O. Since the pseudosonic component of the pressure 
also does not change much for M << i, we represent the total response in the form FI, 2 = 

Fi,2 (~ + FI,2 (a), where FI,2 i~ " is the response, found in Secs. 1 and 2, for an incompres- 
sible medium. 

We note that for strictly antiphase motion of the plates (A 2 = -A I) the monopolar com- 
ponent of the radiation losses (4.1) vanishes. It can be shown that the expression (4.1) is 
correct when the difference of the amplitudes of the vibrations of the plates is sufficiently 
large: l(A2m - Alm)/Ai,2m I >> L2~/Ca. 

5. Instability Increment of Flexural Vibrations. In order to study the characteristic 
vibrations we introduce, following [6], the new dimensionless variables g = ~/~0, V = u = k0/ 

(~0 = [(Dk04 - Nk02)/u I/2, u = �9 + p/k0 (also c = ~/V)), as well as the coefficients 
= Y/Y0, ~i = 1 - ~ and the Reynolds number with respect to the phase velocity of the flex- 

ural waves R 0 = ~0~/k0v (correspondingly, R = RoV). 
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We consider first the vibrations of a single plate. Using the quasipotential approxi- 
mation (see Sec. 3), we rewrite Eq. (1.4) in the form 

mo-~ 2 -~- azV2do - -  i : (~IVu(G - -  G(P)) - -  i ~  a - -  2~r~, (5.l) 
where m 0 = ~ + ~za0; g = (4/~2)~zmL2/ca << i; r = r/~0~ 0. We express the coefficient r in 

terms of the quality factor Qf of a free (placed in a vacuum) plate: r = (i/2Qf)/~i/(i+~i). 

In the absence of dissipation [the right-hand side in Eq. (5.1) is zero] we obtain the 

frequency ~(0) = [(I - ~zV2d0)/m0] z/2, which becomes imaginary when V > V c = i / ~  (V c is 
the critical divergence velocity of the plate in a quasipotential flow). The dependence of 

the real and imaginary parts of the frequency ~(0) = ~r + i~i on V for ~ = 0.2 (~l = 0.8), 

k0 = i, and R0 = 8"104 is shown by curve 1 in Fig. 4 (solid lines - ~r, dashed lines - ~i)" 
We note that the computational results for ~ << 1 (under conditions when the apparent mass 
is greater than the characteristic mass) are virtually independent of e. In what follows, 
al] calculations are performed with ~ = 0.2. The curves 2 and 3 show the behavior of the 
characteristic frequencies in the similar problem for a pair of plates. The magnitude of 
the shift between them indicates that the coupling of the plates is weak. 

In the subcritical region (V < Vc) Eq. (5.1) can be solved by the method of perturba- 

tion with respect to the small quantities I(G - G(P))I, 6, r (similarly to [i]). The calcu- 
lations lead to the following expression for the increment: 

(5.2) 

where the index * indicates that the quantity is evaluated at c = ~(~ Since ~(0) ~ 0 
as V § Vc, the quantity G i becomes positive in the subcritical region. The instability 

arising in this case (mi > 0) is due to the irreversible extraction of energy from the cen- 
tral flow into the boundary layer. The results of the calculations of the aerodynamic part 
of the increment F s [the first term in Eq. (5.2)] for V < Vc, R0 = 8"104 are presented in 

Fig. 5 (curves 1-3 correspond to k0 = i; 2; 3). In this calculation the dependence of G i 
on E was neglected (it was assumed that R = R0). The plots in Fig. 1 can be used to con- 
struct the boundary of the region where subcritical instability is suppressed in the r, 
plane or to write down the condition under which it is stable for a fixed value of V. For 

example, for k0 = 1 and V = 1.12 (at the maximum of Gi(c) - Fig. la) stabilization occurs 

for r + 0.16~ > 0.0045, while for k0 : i, V = 1.5 [at the maximum of Fs(V)] we obtain r + 
0.0525 > 0.0082. 

Subcritical instability of a pair of plates is calculated similarly. The computational 
results for the matrix of apparent compressibilities also make it possible to study the ef- 
fect of the coupling between the plates on instability in a long chain of plates extending 
along the flow. Neglecting radiation losses in this case, we obtain an equation for the 
amplitude ~n of the n-th deflection of the plate in the form 

(~'-&~ + 2 i 7 ~  - -  t ) 7  ~ = ~V~(GA ~ + G~X ~+~ + G~ ~-0. (5.3) 

The simplest and very characteristic case to analyze (see [6]) is the case of periodic sign- 
alternating deflection in an infinite chain of plates, when ~n = (-l)n~0 �9 We represent the 
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expression for the increment of the subcritical instability of such a deflection as 

~aV~ I 2 ] ~i -~ - ~- + ~ J, J, = -- (G~ + AC0,, (5.4) ~01 tool 

where m01 = ~ + ~l(a0 - 2ai); ~(0) = [(i - ~id0V2)/m01] I/2. A similar expression is obtained 
in [6] for the increment in an infinite chain. This expression actually takes into account 
all couplings between plates. It differs from Eq. (5.4) in that the definitions of J, and 

~(0) are different, and by the fact that it does not contain the coefficient i/m01 in front 

of r. The latter difference is evidently caused by the fact that the coupling coefficients 
between the plates via the apparent mass (a0, al, etc.) are not summed completely. The dif- 

ference in ~(0) and the critical divergence velocities in these two cases is small (-5%). 

Figure 6 shows the computational results for J, with k0 = i, R = 8-].04 (curve i) and the 
analog of this quantity from [6] (curve 2). Comparing them shows that the increments ob- 
tained taking into account the couplings partially and completely agree satisfactorily with 
one another. 
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